Rozwiązanie zadania z matematyki: Trójkąt prostokątny o przyprostokątnych 15 i 20 obraca się wokół przeciwprostokątnej. Oblicz objętość i pole powierzchni całkowitej tej bryły., Obrotowe, 3565554
Stereometria - bryły obrotowe, poziom rozszerzony (Polygon Matematyczny) - pełne rozwiązania wszystkich zadań, treści zadań, Matura 2023, 72579 Największy internetowy zbiór zadań z matematyki
Re: Ruch postępowy i obrotowy bryły sztywnej. Z równania ruchu dla ciężarka ma = Fc − N m a = F c − N wyprowadzam wzór na siłę napięcia nici N = m(g − a) N = m ( g − a) i podstawiam do równania Jε = Nr J ε = N r. Podstawiając także wzory na a i ε otrzymuję równanie I = mr2(gt2 2h I = m r 2 ( g t 2 2 h -1) kgm2 k g m 2.
Ja do tego zadania podeszłam inaczej ponieważ dla mnie a było od razu a-2, natomiast s było dla mnie a. Rozpisując to wyszło mi że dla mnie d było poprostu (a-2)pierwiastek 2. Podstawiając te dane do pitagorasa wyszła mi funkcja kwadratowa i licząc je z deltą wyszły mi dwa rozwiązania cztli 3-pierwiastek3 i 3+pierwiastek3.
Bryły obrotowe - zadania dla uczniów szkół średnich Objasnienia: V - objętość bryły obrotowej; Pc - pole powierzchni całkowitej bryły obrotowej 1. Obwód podstawy walca ma 20Π cm, zaś przekątna przekroju osiowego tworzy z podstawą kąt 30º. Oblicz V i pole powierzchni całkowitej walca. 2.
jurus gambar senam dasar psht 1 90. Matematyka dla szkół średnich/maturzystów Wszelkie prawa zastrzeżone Copyright 2012 @ Polecamy Foum o zarabianiu przez internet ktore pokaze Ci czym jest Praca w domu, Jesli jednak szukasz rozrywki zapewnia Ci ja Najlepsze Serwery Minecraft w Polsce warto tez sprawdzic ten: Serwer Minecraft, a jesli budujesz swoj wizerunek w social mediach polecamy kup like aby budowac zasiegi!
Pole powierzchni bocznej stożka o wysokości 4 i promieniu podstawy 3 jest równeA. $9\pi$B. $12\pi$C. $15\pi$D. $16\pi$ Objętość stożka o wysokości 8 i średnicy podstawy 12 jest równaA. $124 \pi$B. $96\pi$C. $64\pi$D. $32\pi$ Przekątna przekroju osiowego walca jest nachylona do jego płaszczyzny podstawy pod kątem $45^\circ$. Wysokość walca ma długość $8$. Objętość walca jest równa:A. $216\pi$B. $128\pi$C. $64\pi$D. $32\pi$ Kula ma objętość $V=288\pi$. Promień $r$ tej kuli jest równyA. 6B. 8C. 9D. 12 Przekrojem osiowym stożka jest trójkąt równoboczny o boku długości 6. Objętość tego stożka jest równaA. $27\pi\sqrt{3}$B. $9\pi\sqrt{3}$C. $18\pi$D. $6\pi$ Promień AS podstawy walca jest równy wysokości OS tego walca. Sinus kąta OAS (zobacz rysunek) jest równyA. $\frac{\sqrt{3}}{2}$B. $\frac{\sqrt{2}}{2}$C. $\frac{1}{2}$D. $1$ Dany jest stożek o wysokości 6 i tworzącej $3\sqrt{5}$. Objętość tego stożka jest równaA. $36\pi$B. $18\pi$C. $108\pi$D. $54\pi$
Zagadnienia: matematyka - podstawówka, gimnazjum - zadania z pełnym rozwiązaniem: bryły obrotowe, powstawanie brył, objętości i pole powierzchni całkowitej Zadanie 1. Oblicz objętość i pole powierzchni całkowitej brył:- walca o promieniu podstawy 3cm i wysokości 10cm, Wynik Rozwiązanie - stożka o promieniu podstawy 6cm, wysokości 8cm i tworzącej 10cm, Wynik Rozwiązanie - kuli o promieniu 6cm. Wynik Rozwiązanie Zadanie 2. Oblicz objętość stożka o promieniu podstawy 3cm i tworzącej o długości 5cm. Wynik Rozwiązanie Zadanie 3. Oblicz pole powierzchni całkowitej kuli o objętości 36. Wynik Rozwiązanie Zadanie 4. Oblicz wysokość walca o objętości 108 i promieniu podstawy o długości 6cm. Wynik Rozwiązanie Zadanie 5. Oblicz objętość brył powstałych poprzez obrót:- prostokąta o wymiarach 4cm x 6cm, wokół krótszego boku, Wynik Rozwiązanie - rombu o przekątnych 16cm i 12cm, wokół dłuższej przekątnej. Wynik Rozwiązanie Zadanie 6. Oblicz pole powierzchni całkowitej brył, powstałych poprzez obrót:- trójkąta równoramiennego o podstawie 12cm i ramieniu o długości 10cm, wokół wysokości, Wynik Rozwiązanie - prostokąta o wymiarach 8cm x 10 cm, wokół osi symetrii przechodzącej przez krótszy bok. Wynik Rozwiązanie Zadanie 7. Cztery stalowe kulki o promieniu 3cm, zostały przetopione i uformowane w walec o promieniu podstawy 2cm. Oblicz wysokość powstałej bryły. Wynik Rozwiązanie W przypadku jakichkolwiek pytań zapraszamy na nasze forum :)
zapytał(a) o 19:37 Rozwiązanie zadania z brył obrotowych Oto treść zadania:Rozwinięcie powierzchni bocznej stożka to 3/4 koła o r=4cm. Ile wynosi pole powierzchni całkowitej tego stożka?Proszę o szybkie rozwiązanie,jest mi ono bardzo potrzebne :) Odpowiedzi odpowiedział(a) o 19:43 Pole boczne stożka to 3/4 pola koła o promieniu równym 4, więc:Pb = 3/4 * Pi * 4^2Pb = 12 * PiWzór na pole boczne stożka:Pb = Pi * r * lPi * r * l = 12 * PiTworząca stożka jest równa promieniowi tego pierwszego koła, czyli wynosi 4 * r * 4 = Pi * 12 /: Pi4r =12 /: 4r = 3Promień podstawy stożka jest równy 3, liczymy pole całkowite:Pc = Pi * r * (r + l)Pc = Pi * 3 * (3 + 4)Pc = 21 * Pi [cm^2] Pole boczne stożka to 3/4 pola koła o promieniu równym 4, więc:Pb = 3/4 * Pi * 4^2Pb = 12 * PiWzór na pole boczne stożka:Pb = Pi * r * lPi * r * l = 12 * PiTworząca stożka jest równa promieniowi tego pierwszego koła, czyli wynosi 4 * r * 4 = Pi * 12 /: Pi4r =12 /: 4r = 3Promień podstawy stożka jest równy 3, liczymy pole całkowite:Pc = Pi * r * (r + l)Pc = Pi * 3 * (3 + 4)Pc = 21 * Pi [cm^2] Uważasz, że ktoś się myli? lub
Na kuli opisano stożek, o najmniejszej objętości. Oblicz stosunek pola powierzchni tego stożka do pola powierzchni kuli. Pole powierzchni bocznej stożka o wysokości 12 i promieniu podstawy 5 jest równeA. $60\pi$B. $25\pi$C. $144\pi$D. $65\pi$ Pole powierzchni bocznej stożka o wysokości 24 i promieniu podstawy 7 jest równeA. $175\pi$B. $49\pi$C. $576\pi$D. $168\pi$ Pole powierzchni bocznej stożka o wysokości 40 i promieniu podstawy 9 jest równeA. $81\pi$B. $369\pi$C. $1600\pi$D. $360\pi$ Metalowy stożek, którego tworząca o długości 12 cm jest nachylona do płaszczyzny podstawy pod kątem $30^{\circ}$, przetopiono na 48 jednakowych kulek. Oblicz promień kulki. Powierzchnia boczna stożka po rozwinięciu jest półkolem o promieniu 12 cm. Podstawa tego stożka jest kołem promieniuA. 12 cmB. 6 cmC. 3 cmD. 1 cm Kąt rozwarcia stożka ma miarę $120^\circ$, a tworząca tego stożka ma długość $6$. Promień podstawy stożka jest równyA. $3$B. $6$C. $3\sqrt{3}$D. $6\sqrt{3}$
bryły obrotowe zadania i rozwiązania